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Chapter 1

Symmetrization of Systems of

Conservation Laws

This lecture briefly reviews several related topics associated with the symmetrization of

systems of conservation laws and quasi-conservation laws:

1. Basic Entropy Symmetrization Theory

2. Symmetrization and eigenvector scaling

3. Symmetrization of the compressible Navier-Stokes equations

4. Symmetrization of the quasi-conservative form of the MHD equations

There are many motivations, some theoretical, some practical, for recasting conservation

law equations into symmetric form. Three motivations are listed below. Tile first motivation

is widely recognized while the remaining two are less often appreciated.

1. Energy Considerations. Consider the compressible Navier-Stokes equations in quasi-
linear form with u the vector of conserved variables, fi the flux vectors, and M the

viscosity matrix

u,t + _u u,x, = (Mi3u,x_),x,. (i.i)

In this form, the inviscid coefficient matrices f/,u are not symmetric and tile viscosity

matrix M is neither symmetric nor positive semi-definite. This makes energy analysis

almost impossible. When recast in symmetric form, tim inviscid coefficient matrices

are symmetric and the viscosity matrix is symmetric positive senti-definite. The energy

analysis associated with Friedrichs systems of this type is well-known.

. Dimensional consistency. As a representative example, consider the time derivative

term from (1.1). The weak variational statement associated with this equation requires

the integration of terms such as - f w Ttu dxdt. When w and u reside in the same

space of functions, the inner product quantity wTu is dimensionMly inconsistent.

Consequently, errors made in a computation would depend fundamentally on how

the equations have been non-dimensionalized. When recast in symmetric form, the

inner product wTu is dimensionally consistent with units of entrol)y density per unit

volume.



. Eigenvector scaling. Apart from degenerate scalings, aIw scaling of eigenvectors satis-

fies the eigenvalue problem. Unfortunately, numerical discretization techniques some-

times place additional demands on the form of right eigenvectors. As noted by Balsara

[Ba194] in his study of high order Godunov methods, several of the schenms he stud-

ied that interpolate "characteristic" data (see for example Harten et al. [HOEC87])

showed accuracy degradation that depended on the specific scaling of the eigenvectors.

In the characteristic interpolation approach, the solution data is projected onto the lo-

cal right eigenvectors of the flux Jacobian, interpolated between cells, and finally trans-

formed back. The interpolant thus depends on the eigenvector form. Symmetrization

provides some additional insight into the scaling of eigenvectors. Let R(n) denote the

matrix of right eigenvectors associated with the generalized flux Jacobian in the direc-

tion n. Using results from entropy symmetrization theory, Sec. 1.2 describes a scaling

of right eigenvectors such that the product R(n)RT(n) is independent of the vector n.

This result is used in Sec. 1.4 which discusses the ideal magnetohydrodynamic (MHD)

equations. The right eigenvectors associated with these equations exhibit notoriously

poor scaling properties, especially near a triple umbilic point where fast, slow and

Allen wave speeds coincide, [BW88]. The entropy symmetrization scaling provides

a systematic approach to scaling eigenvectors which is unique in the sense described
above.

1.1 A Brief Review of Entropy Symmetrization Theory

Consider a system of m coupled first order differential equations in d space coordinates and

time which represents a conservation law process. Let u(x, t) : R d × R + _ R m denote the

dependent solution variables and f(u) : R m _-_ R m×a the flux vector

u,t + f/,z, = 0 (1.2)

with implied summation on the index i. Additionally, this system is assumed to possess the

following properties:

1. Hyperbolicity. Tim linear combination

f. (n) =

has m real eigenvalues and a complete set of eigenvalues for all n E R a.

2. Entropy Inequality. Existence of a convex entropy pair U(u), F(u) : R m ,-+ R such

that in addition to (1.2) the following inequality holds

u, + _<0. (1.3)

In the standard symmetrization theory [God61, Moc80, Har83b], one seeks a change of

variables u(v) : R 'n ,-+ R m to Eqn. (1.2) so that when transformed

U,vV,t + f_,v,_, = 0 (1.4)

the matrix u,v is symmetric positive-definite mid the matrices f/v are symmetric. This

would be a classical Friedrichs system. Clearly, if flmctions Ll(v),9_(v) : R m _-_ R l can be
found such that



then the matrices
U,v: H,v,v, fvL= 5_,v,v

are symmetric. To insure positive-definiteness of U,v so that mappings are one-to-one,

convexity of H(v) is imposed. Since v is not yet; known, little progress has been made but

introducing the Legendre transform

followed by differentiation

U(u) = uTv - U(v)

V,u -- v T + uTv,u --/A/,vV,u -----vT

yields an explicit expression for the entropy variables v in terms of the entropy function

U(u). Symmetrization and generalized entropy functions are intimately linked via the

following two theorems:

Theorem 1.1.1 Godunov [God61] If a hyperbolic system is symmetrized via change of

variables, then there exists a generalized entropy pair for the system.

Theorem 1.1.2 Mock [Moc80] If a hyperbolic system is equipped with a generalized en-

tropy pair U, F/, then the system is symmetrized under the change of variables v T = U,u.

For many physical systems, entropy inequalities of the form (1.3) can be derived by ap-

pending directly to the conservation law system and the second law of thermodynamics.

Using this strategy, specific entropy functions for the Navier-Stokes and MHD equations

are considered in Sees. 1.3, 1.4 respectively.

1.2 Symmetrization and Eigenvector Scaling

In this section, an important property of right (or left) symmetrizable systems is given.

Simplifying upon tile previous notation, let A ° -- U,v, A i = _v and rewrite (1.4)

A_°v,t + _Ai A ° v,_, = 0. (1.5)
SPD Symm

The following theorem states an important property of the symmetric matrix products AiA °

symmetrized via the symmetric positive definite matrix A °.

Theorem 1.2.1 (Eigenveetor Sealing) Let A E R _×_ be an arbitrary diagonMizable

matrix and S the set of all right symmetrizers:

S={BcR '_xn ] B SPD, AB symmetric}.

Further, let R E R n×n denote the right eigenvector matrix which diagonalizes A

A = RAR-1

with r distinct eigenvalues, A = Diag(A1 [m_xm_, A21m2x,n.,,..., A_Im_xm_). Then for each

B C S there exists a symmetric block diagonM matrix T = Diag(Tml xml, T, n2xm2, •• •, Tmr xm,.)

that block scales columns of R, /_,= RT, such that

B=R/_. "v, A=fCAR _
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which imply
AB =/_A/_ T.

Proofi The symmetry of B and A B implies that

AB- B A T = RAR-1B- BR-TAR T = 0

or equivalently for Y E R nxn

AY-YA=0, Y = R-1BR -T. (1.6)

Partition Y into r × r blocks, Ym_×mj, with block dimensions corresponding to eigenvalue

multiplicities. Equation (1.6) then reduces to the following set of decoupled systems:

AJm,×m, Ym, xm3 - )uY, n, xmjIm_xmj = O, Vi, j <_ r. (1.7)

or simply

(Ai - Aj)Y,n, xm_ = O, Vi,j <_ r. (1.8)

This implies that Y is of block diagonal form since Ym_xmj = 0, i # j. From the definition
Y = R-1BR -T, Y is congruent to B, hence symmetric positive definite (SPD). Given the

block diagonal structure of Y, the square root factorization exists globally as well as for each

diagonal block Ym, ×m, - y]/2 y1/2 This yields the stated theorem with T = y1/2.
-- ?_ X?Rt ?hi X ?hi "

This theorem is a variant of the well-known theory developed for the commuting matrix

equation

AX-XA=O, A, XER nx_,

see for example Gantmacher [Gan59]. Note that the general theory addresses the more

general situation for which the matrix A can only be reduced to Jordan canonical form.

Remark 1.2.1 From the scaling theorem 1.2.1, the right eigenvectors associated with each

A i can be scaled so that AiA ° =- R iAi(Ri) T which yields a revealing form of the symmetric

quasilinear form

A°v,t -t- I_ Ai( Ri)Tv,_ = 0

with A ° = RI(R1) T = .... Rd(Rd) T.

1.3 Example: Compressible Navier-Stokes Equations

Consider the ideal compressible Navier-Stokes equations, x E R d,

0--t +V. pVV+Ip =V. (1.9)
V (E + p) rV - q

where V E R d is the velocity vector, p and p the density and pressure of the fluid, E the

specific total energy defined as
1 2

E- P +_pV (1.±0)"/-1



andv is the viscous stress tensor:

r = _ \&_) +_ \O*j + Ox_] " (1.1i)

In addition, an ideal gas is assumed p = p R T as well as Fourier heat conduction q = -n VT.

In these equations A and p are diffusion coefficients, _ the coefficient of thermal conductivity,

7 the ratio of specific heats, and R the ideal gas law constant.

In 1983, Harten [Har83b] proposed the generalized convex entropy function

gtt

V(u) = -pg(_), g' > 0, _; < _ 1

for the compressible Euler equations. In this equation, s is the thermodynamic entropy of

the fluid. This choice was motivated from the well-known entropy transport inequality for

the inviscid Euler equations:

s,t +V. Vs > 0

which generalizes to

9(,),t + v. vg(_) > 0, g' > 0.

or after combining with the continuity equations

(pg(_)),, + v. p_(_)v > 0.

Thus, it becomes clear that U = -pg(s), F i = -pg(s)Vi is an exeeptable entropy pair.

Hughes, Franca, aa_d Mallet [HFM86] removed the arbitrariness of g(s) by showing that

symmetrization of the Navier-Stokes equations with heat conduction places the additional

restriction that g(s) be at most affine in s, i.e. g(s) = co + cls. A convenient choice is given

by U(s) = _2_ which yields the following entropy variables:
3`-1

_-1 q'-I --

V _- g,u _

p

The change of variable matrix u,v takes a particularly simple form:

U,v = pVV + pI pHV

pHV T pH 2 -

with a the sound speed, a2 = "/p/p, and H the specific total enthalpy, H = a2/(_-1)+V 2/2.

Consider the application of the Scaling Theorem 1.2.1 to the inviscid Euler terms ap-

pearing in the Navier-Stokes equations

A°v,t + AiA°v,_, = 0 (1.12)

with A i = _, and A ° = u,v. It is sufficient to consider symmetrization of the arbitrary
linear combinations of the form

A(_) = _A', II"ll= 1 (1.13)



and scaled right eigenvectors R(n) such that

A(n) = R(n)A(n)R l(n), A ° = R(n)RT(n).

From this result, the symmetric coefficient matrices are given by

A(n)A ° = R(n)h(n)RT(n).

From a derivational point-of-view, it is advantageous to first compute the eigensystem as-

sociated with the system in primitive variables, w = (p,V,p) T,

w,, + U w1A_ U,w W,x, = 0 (1.14)

and then to compute the scaling of the right eigenvectors, r(n), of the primitive variable

system. Once the scaled right eigenvectors of the primitive variable system have been

computed, scaled right eigenvectors of the conservative system are easily recovered from

R(n) = U,wr(=)

with

(v 0)U,w = pI 0 . (1.15)

PVT "_-1½V 2 1

1.3.1 Entropy Scaled Eigenvectors for the 3-D Euler Equations

Following the procedure described in Theorem 1.2.1, after some tedious algebraic manip-

ulation, the following scaled right eigenvectors of the primitive variable system have been
obtained:

Entropy and Shear Waves: )kl,2, 3 = V • n

rl,2,3 = a [C]

0 T
(1.16)

where [C(n)] = nie,jk and eijk is the usual alternation tensor.

Acoustic Waves: A+ = V •n i a

7"4- = -f-a n .

\pc ]
(1.17)

In Fig. 1.1, the Euclidean norm, ItR(n)RT(n)[IE, is graphed for n = (cosO, sinO)T,o E

[0, 27r] with constant (p, V, p) using entropy scaled eigenvectors and the "naturally" scaled

eigenvectors given in Struijs [Str94]. The entropy scaled eigenvectors produce a constant

result since R(n)RT(n) = U,v which is independent of n. Although the naturally scaled

eigenvectors seem to (lifter only in minor ways from the entropy scaled counterparts, the

MHD example given in the next section provides a more convincing argument for proper

eigenvector scaling.
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Figure 1.1:
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1.4 Example: Quasi-Conservative MHD Equations

As a second example, consider the ideal (nonrelativistic) MHD equations, x E R d,

P_/ pVV +I (p+ ½B 2) -BB

E ) +V- (E+p+V ½B2) _S (V.B) =0.
B VB - BV

0

0t
(1.18)

In addition to the variables defined for the Navier-Stokes equations, B E R a is the magnetic

field, and E is the specific total energy redefined as

-- P-- +plv2 + 1B2. (1.19)E
'7 1 2

At this point, the equations have been written in conservative (divergence) form. Unlike

tile Navier-Stokes equations, the MHD equations have the additional time independent

constraint V • 13 = 0. A number of numerical techniques exist for solving problems of this

type:

1. Mixed finite element formulations and Lagrange multiplier formulations

2. Finite element penalty formulations.

3. Staggered mesh formulations.

4. Projection formulations.

In the next section, a technique developed by [Pow94] is used to reformulate the MHD

equations in quasi-conservative form which obviates the V • B = 0 constraint.

In has been known for some time that negated specific entropy, -ps, is a convex gener-

alized entropy fimction for the ideal MHD equations, see Ruggeri [RS81]. Even so, sta_'ting

fi'om the MHD equations (1.18) in the standard quasi-linear form:

u t+Aiu,x, =0, A i=fi (1.20)

9



followedby the changeof variablesto

A°v,t + AiA°vx, = 0, A ° = U,v (1.21)

with Y T = V,u and U(u) = __At_ does not symmetrize the system. For example ill 2-D, the
7-1

following result is obtained:

A1A o _ (A 1A°) "r =

'0 0 0 0 0 0

0 0 0 vB£ _ nag_z 0
P P

0 0 0 _ eB1 B2 _ pB2 0
P P

vB_B2 0 - ev_ B_ _pV2B%0
P P P P

0 pB1 _ vV2B2 0
P P P P

0 0 0 _va_v_z__ _vv_Y_z 0
P P

(1.22)

This failure to symmetrize the MHD system can be explained by the simple observation

that the constraint V.B = 0 has not been used. A straightforward derivation of the entropy

transport equation for the ideal MHD equations reveals this. For ideal MHD, entropy is

given by s = log(pp -_) so that

do = -7--dp + ldp.
P P

Inserting terms from (1.18), the following transport equation for smooth flow results:

s,t +v. Vs + (7- 1)(v. B)(V. B) = 0. (1.23)

Clearly, the V- B = 0 condition is fundamental in the derivation of the generalized entropy

function. The next section considers Powell's method which implicitly satisfies V • B = 0

and permits symmetrization using U(u) - --- 9"-1"

1.4.1 Powell's Quasi-Conservative Formulation of the MHD Equations

During an investigation of approximate Riemann solvers for the ideal MHD equations,

Powell [Pow94] observed that the coefficient matrices, A i, appearing in the quasi-linea_" form

are individually rank deficient, i.e. each contains a zero row corresponding to components of

the B field. This degeneracy was removed by replacing the zero eigenvaiue and eigenvector

with a "divergence wave" eigenvector with velocity eigenvalue similar to the entropy wave.

Powell then noted that adding the divergence wave eigenvector was equivalent to writing

the MHD equations (1.18) in chain rule form:

OE

Ot

Op
+ V. (pV) = 0

--&--+v.(pvv)+v p+ B2 -B-VB-B(V.B)=0

-- + V . V (E + p + IB'2) + (E + p + IB2) V . V - B . V(V . B) - (V . B)(V . B) = O

OB

0--T +V'VB+BV'V-B'VV-V(V'B) =0

and weakly enforcing V •B = 0 by removing terms proportional to V • B as mlderlined in

Eqn. 1.24. Powell also noted that this modification changes the nature of the equations in

(1.24)

I0



a fundamental way. This is revealed by taking the divergence of the B field equations for

the original system:

V.(?+V.(VB-BV)) =O(V.B)=0 (1.25)

as well as the modified system (1.24) with underlined terms removed:

V. --+V.VB+BV.V-B.VV =_(V.B)+V-(VV.B) =0. (1.26)

The first form (1.25) states that if V • B = 0 is initially zero then it should remain zero.

The second form (1.26) states that (V •B)/p is a passive scalar for the system. Ally local

V- B is simply advected away. Powell asserts that this is a more numerically more stable

process. Finally, note that removal of the underlined terms in (1.24) can be viewed as

adding source-like terms proportional to V. B to the original divergence form (1.18), i.e.

/ ,vo-7 v B :- v.n (V.B). (1.27)
B VB - BV

This suggests the quasi-conservative nature of the equations. In the next section, the

coefficient matrix form is retained in order to show that the entropy function U(u) = --_-'7-1

does symmetrize Powell's modified MHD equations.

1.4.2 Symmetrization of Powell's Quasi-Conservative MHD Equations

It is again most convenient to write the equations in the primitive variable form w =

(p, V, p, B)T:
-t i

w,t + U,w Apu,wWx, = 0 (1.28)

where A_ denotes a matrix for the modified system. Consider arbitrary combinations,

Ap(n) = ni A_o and write Powell's modified coefficient matrices in the following compact
for I11:

0 0.)V.n pnr 1-n _(nn r B.n)
u.2Ap(n)u,_ = (V. n)I p - (1.29)

"/pn T V • n 0

Bn T - B .n 0 (V •n)I

with

I 0 T 0 07BT )

V pI 0 ooT 1
U,w = 1 2 _ • (1.30)

_V pvT "7-1

0 O0T 0

A straightforward calculation reveals that U(u) = ---¢-_ does symmetrize this system. The
"7 l

entropy variables m'e given by

-- B2 /

s + z+l E + __
7--=i-t '7 l p 2p

e__
P

_£
P

e_P_
P

11



andtim Riemannianmatrix U,v(:anbewritten simplyas

p pV T E - ½B 2 0 T

pV pVV + pI pHV 00 T /
: +o -B: ]E- ½B 2 pHV T pH2 - 7-1 7

o "n /P

with a the sound speed, a 2 = 7P/P, and H the specific total enthalpy, H = a2/(7-1)+V 2/2.

1.4.3 Eigensystem of Powell's Quasi-Conservative MHD Equations

In order to give the eigensystem for the MHD equations, it is useful to define b - B/x/_

and the fast and slow speeds:

1 1 2

The eigenvalues and eigenvectors are then written compactly as:

Entropy and Divergence Waves: /_1,2 ---_ V • n

711 -_ , r2 _ (1.32)

Alfvdn Waves: A_=a= V • n ± (b- n)

(o+(n x B)
r±a = 0

v_(n × B)
) (1.33)

Magneto-acoustic Waves: A+f,+8 = V • n ± cf, s

4, s n-(b-n) b

±CLs c} -(b.n)2 (1.34)
r+f,±s = ' 2

(BP2 - riB) n

6,scL_(b.n) 
In this form, the magneto-acoustic eigenvectors exhibit several forms of degeneracy as cva'e-

fully described in Roe and Balsara [RB96]. In the next section, the entropy scaled eigenvec-

tors are given. These eigenvectors are similar (but not identical) to the eigenvectors given

in Roe and Balsara. The behavior of the new eigenvectors is significantly improved.

1.4.4 Entropy Scaled Eigensystem of Powell's Quasi-Conservative MHD

Equations

After consider algebraic manipulation, entropy scaled eigenvectors corresponding to the

Powell's quasi-conservative MHD equations have been obtained. Using the notation of Roe
and Balsara define

_ cs __ c_-a "2(_ a 2 _ 2

12



andn j , a unit vector orthogonal to n lying in the plane spanned by n and b.

Entropy and Divergence Waves: A1,2 = V • n

rl = _w, , r2 = (1.36)

Alf-vdn Waves: A:La= V •n + b. n

I°)r+a = O (1.37)

Fast Magneto-acoustic Waves: )k-t-f = V • n + Cf

_2_ -I-a[ a2 n+a, a ((b.n±)n-(b.n)n ±)r+/= ,/at: (1.38)
_:v_a 2
Otsa ll ±

Slow Magneto-acoustic Waves: A+s = V • n + cs

)
_2_ ±sgn(b-n) a'a(b'n)n+a/c}n±

r+s = orsv/__a2V_C/ (1.39)

-c_]a n ±

Next, the experiment performed in Sec. 1.3.1 is repeated for the MHD equations. In Fig.

1.10

1.05

_ 1.00

0.95-

0.90
0 6'0 1½0 180 240 300 360

Theta (deg)

Figure 1.2: Euclidean norm dependency of R(n)R(n) T on n for the MHD equations,

(p/rhooo = 1.3, Vt/aao = .8, V2/am = -.6,p/poo = 2.0, Bx = .2, By = 1.2)
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1.2,the Euclideannorm, IIR(n)RT(n)IIE,is graphedfor n = (cos0,sin0)T, 0 E [0, 21r] with

constant (p, V,p, B) using entropy scaled eigenvectors, the naturally scaled eigenvcctors

given in Sec. 1.4.3, and a slightly generalized form of the eigenvectors given in Roe and

Balsara [RB96]. The singularities in tlm natural scaling are clearly seen. Once again note

that the entropy scaled eigenvectors produce a constant result since R(n)RT(n) = u,v which

is independent of n.

In conclusion, using the Scaling Theorem 1.2.1, scaled eigenvectors, Rp(u), have been

obtained for Powell's quasi-conservative MHD equations such that

Ap(n) = Rp(n)Ap(n)P_l(n), A ° = Rp(n)P_(n)

and the symmetric coefficient matrices

Ap(n)A° = Rp(n)A(n)Rf (n).

In future sections, tlmse results will be exploited in the construction of stabilized numerical
discretizations.
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Chapter 2

Maximum Principles for Numerical

Discretizations on Triangulated

Domains

One of the best known tools employed in the study of differential equations is tile maximunl

principle. Any flmction f(x) which satisfies the inequality f" > 0 on the interval [a,b]

attains its maximum value at one of the endpoints of the interval. Solutions of the inequality

if' > 0 are said to satisfy a maximum principle. Functions which satisfy a differential

inequality in a domain fl and because of the form of the differential equation achieve a

maximum value on the boundary Oft are said to possess a maximum principle. Recall the

maximum principle for Laplace's equation. Let Au -- "axz +uyy denote the Laplace operator.

If a function u satisfies the strict inequality

An > 0 (2.l)

at each point in _t, then u cannot attain its maximum at any interior point of _. The strict

inequality can be weakened

Au > 0 (2.2)

so that if a maximum value M is attained in the interior of _ then the entire flmction must

be a constant with value M. Without any change in the above argument, if u satisfies the

inequality

Au + crux + c2uy > 0

in _t, then u cannot attain its maximum at an interior point.

The second model equation of interest is the nonlinear conservation law equation:

ut + (f (u) )x = O, df = a(u) (2.3)
du

In the simplest setting the initial value problem is considered in which the solution is spec-

ified along the x-a_xis, u(x, 0) = u0(x) in a periodic or compact supported fashion. The

solution can be depicted in the x - t plane by a series of converging and diverging char-

acteristic straight lines. From the solution of (2.3) Lax provides the following observation:

the total increasing and deceasing variations of a differentiable solution between any pairs

of characteristics are conserved., [Lax73].

/+_ Oa(x, t)I(t+to)=/(to), Z(t) = _ dx
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Moreoverin the presenceof entropysatisfyingdiscontinuitiesthetotal variationdecreases
(informationisdestroyed)in time.

Z(t + to) <_ I(to) (2.4)

An equally important consequence of Lax's observation comes from considering a mono-

tonic solution between two non-intersecting characteristics: between pairs of characteris-

tics, monotonic solutions remain monotonic, no new extrema are created. Also from (2.4)
it follows that

1. Local maxima are nonincreasing

2. Local minima are nondecreasing

These properties of the differential equations serve as basic design principles for numerical

schemes which approximate them. The next section reviews the theory surrounding discrete

matrix operators equipped with maximum principles.

2.1 Discrete Maximum Principles for Elliptic Equations

2.1.1 Laplace's Equation on Structured Meshes

Consider Laplace's equation with Dirichlet data

Eu = O,x,y E 9t

u = g,x,y E 012 (2.5)

£=A

From the maximum principle property we have that

suplu(x,y)l < sup lu(x,y)]
xE_ xEO_

For simplicity consider the unit square domain

_= {(x,y) _ R_ : O< x,y < 1}

with spatial grid xj = jAx, Yk = kAx, and JAx = 1. Let Uj,k denote the numerical

approximation to u(xj,Yk). It is well known that the standard second order accurate ap-

proximation
1

£AU = _x2[Uj+l,k + Uj 1,k + Uj,k+l + Uj,k-1 - 4Uj,k] (2.6)

exhibits a discrete maximum principle. To see this simply solve for the value at (j, k)

1 U
Uj,k "_ _[ j+l,k -_ Vj-l,& -_ Vj,kWl _-Uj,k-1].

If Uj,k achieves a maximum value M in the interior then

1

M : -_[Vj+l, k -_ U3 1,k -_- Vj,k+l Jr- Uj,k--I]

which implies that

M = Uj+_,_= _J_ _,_= Yj,_+, = uj,_

Repeated application of this _u'gument for the four neighboring points yields a discrete

maximum principle.

16



2.1.2 Monotone Matrices

Tile discreteLaplacianoperator--£A obtainedfrom (2.6) is oneexampleof a monotone

matrix.

Definition: A matrix .M is a monotone matrix if and only if 34 -1 > 0 (all entries are

nonnegative).

Theorem 2.1.1 (Monotone Matrix) A sufficient but not necessary condition for 34

monotone is that 34 be an M-matrix. M-matrices have the sign pattern 31// > 0 for

each i, 31ij <_ 0 whenever i _ j. In addition 34 must either be strictly diagonally dominant

n

34ii > Z 131ijl, i = 1,2,...,n (strict diagonal dominance)
j = 1,j ¢i

or else 31 must be irreducible and

n

34. _ _ 131sjl, i = 1,2,...,n (diagonal dominance)
j=l,j¢i

with strict inequality for at least one i.

Proofi The proof for strictly diagonally dominant M is straightforward. Rewrite the matrix

operator in the following form

31 = D-N, D>O,N>_O

= [I-ND-1]D D 1>0

= [I- P]D P > 0 (2.7)

From the strict diagonal dominance of 31, eigenvalues of P = ND 1 are less than unity.

This implies that the Neumann series for [I - p]-I is convergent. This yields the desired
result:

31-1 = D-I[I + p + p2 + p3 + ...] >_ 0 (2.8)

When .M is not strictly diagonally dominant then 31 must be irreducible so that no per-
mutation T' exists such that

= [34110 34223412]] (reducibility).pT34p

This insures that eigenvalues of P are less than unity. Once again, the Neumann series is

convergent and the final result follows immediately. •

2.1.3 Laplace's Equation on Unstructured Meshes

Consider solving the Laplace equation problem (2.5) on a planar triangulation using a

Galerkin finite element approximation with linear elemental shape functions. (Results using

a finite volume method are identical but are not considered here.) Next pose (2.5) in vari-

ational form. Let S h E H I be the finite-dimensional space of trial functions with bounded

energy which satisfy the Dirichlet boundary condition on F. Similarly, let 12h E H_ denote

the [inite-dimensional space of flmctions satisfying homogeneous boundary conditions. Find
'ILE S h such that for all w E )2h

ff(Vu. Vw) dx = 0 (2.9)
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with
_,(x)= g(x), x _ r.

From this simple equation, we have the following remarkable theorem:

Lemma 2.1.1 The C O linear Galerkin finite element discretization of the 2-D Laplace

equation (2.9) is a monotone discretization if and only if the triangulation is a Delaunay

triangulation.

Proof: Consider a single arbitrary simplex T = simplex(xt, x2, x3) and tile discretization

of (2.9) in terms of local linear shape functions Ni(x) satisfying Ni(xj) = 50. Using these

shape flmctions u(x) 3 = Y_q=l Nj(x)wj, x E Inserting= Y_q=l Nj(x)uj, x E T and w(x) a 7".
these expressions into (2.9) yields

3 3

TVW . Vu dx = Z __wi uj (VNi" VNj) meas(T). (2.10)
i=1 j=l

These expressions can be collected pairwise for edges surrounding a vertex. After some

straightforward manipulation, the following global discretization formula is obtained

IYl

L(vw v.) dx = Z w_Z w_j (._ - uj) = 0
i=t jeXi

(2.11)

where Af/denotes the set of vertices adjacent to vertex vi with weights

W/j = (VN/. VNj)meas(T) + (VN/_. VN_)meas(T')

= _1 (cotan(aij) + cotan(a:j))2
(2.12)

In this formula, aij and a_j are the two angles subtending tile edge e(wi,vj), see Fig. 2.1.

_ VN;
VNj 1

Figure 2.1: Discretization weight geometry for the edge e(vi,vj)

Since the discretization formula must hold for arbitrary vahms of wi at interior vertices, it

can be concluded that for all interior vertices vi

E W_j (',,i- ',,j)= 0. (2.13)
j eAr_
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Written in this form, thediscretizationis monotoneif all weightsarenonnegative,Wi3 > 0

and Dirichlet boundary conditions are enforced. Further simplification of the edge weight

formula is possible

W_ : 1-2

2 \sin(aij) sin (_j) ]

1 {f sin(otij + (_j) '_

= (2.14)

Since aij < lr, a_j < _r, the denominator is always positive, hence nonnegativity requires

that aij + a_j <_ r.

Figure 2.2: Circumcircle test for adjacent triangles, pt interior, p" exterior, p cocircular.

Some trigonometry reveals that for the configuration shown in Fig. 2.2 with circumcircle

passing through {wi,vj, vk} the sum (_ij + (_j depends on the location ofp with respect to
the circumcircle in the following way:

_ij +c_j < 7r, p exterior

(_ij +c_j > lr, p interior

_ij +c_j = lr, p cocircular (2.15)

Also note that by considering the circumcircle passing through {vi, vj, Vp}, similar results

would be obtained for Vk. The condition of nonnegativity implies a circumcircle condition

for all pairs of adjacent triangles whereby the circumcircle passing through either trian-

gle cannot contain the fourth point. This is precisely the unique characterization of tim

Delaunay triangulation [De134] which completes the proof. •

Observe that from equation (2.12) that cotan(a) > 0 if a < _r/2. Therefore a sufficient but

not necessary condition for nonnegativity of the Laplacian weights is that all angles of the

mesh be less than or equal to r/2. This is a standm'd result in finite element theory [CR73]

and applies in two or more space dimensions.

Given Lemma 2.1.1, it becomes straightforward to obtain a discrete maximum principle for

Laplace's equation on Delaunay triangulations using a Galerkin finite element approxima-
tion.
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Theorem 2.1.2 The discrete Laplacian operator obtained from the Galerkin finite element

discretization of (2.9) with C o linear elements exhibits a discrete maximum principle for

arbitrary point sets in two space dimensions if the triangulation of these points is a Delaunay

triangulation.

Proof: From Lemma 2.1.1, a one-to-one correspondence exists between nonnegativity of

weights and Delannay triangulation. Assume a Delaunay triangulation of the point set so

that for some arbitrary interior vertex v0 and all adjacent neighbors vi we have W0i >__0.

Next solve for u0:
 ie. o Woiui

uo = Eel:Co = , iue
i 6 Al'o

with
W0i

ai -  ie:¢o Woi

which satisfies cre > 0 and _eeAc o ai = 1. This implies uo is a convex combination of the

neighboring values, hence

min ue < uo < ma,xui (2.16)
ieN0 - - eeNo

If u0 attains a maximum value M then all ui = M. Repeated application of (2.16) to

neighboring vertices in the triangulation establishes the discrete maximum principle. •

One can ask if the result concerning Delaunay triangulation and the ma_ximum principle

extends to three space dimensions. Unfortunately, the answer is no. This can be demon-

strated by counterexample. The resulting formula for the three-dinmnsional Laplacian edge

weight is

1 a(vo,vd

Wo -- IARk+ I cotan(%+&). (2.17)
k=l

In this formula, N'0 is the set of indices of all adjacent neighbors of v0 connected by

i

Figure 2.3: Set of tetrahedra sharing interior edge e(vo,vi) with local cyclic index k.

incident edges, k a local cyclic index describing the associated vertices which form a polygon

of degree d(vo,ve) surrounding the edge e(vo,vi), oe _ is the face angle between tile two
k+ 7

faces associated with Sk+} and S' _ which share the edge e(vk,vk+t) and IARk+._I is tile
k+ 7

magnitude of the edge, see Fig. 2.3. A ma_xinmm principle is guaranteed if M1 W0i _> 0. We.

now will proceed to describe a valk[ Delaunay triangulation with one or more Woe < 0. It
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will sufficeto considertile Delaunaytriangulationof N points in which a single point v0 lies

interior to the triaalgulation and the renmining N - 1 points describe vertices of boundary

faces which completely cover the convex hull of the point set.

Top View Side View

Figure 2.4: Subset of 3-D Delaunay Triangulation that fails to maintain nonnegativity.

Consider a subset of the N vertices, in particular consider an interior edge incident to v0

connecting to vi as shown in Fig. 2.4 by the dashed line segment and all neighbors adjacent

to vi on the hull of the point set. In this experiment the height of the interior edge, z, serves

as a free parameter. Although it will not be proven here, the remaining N - 8 points can t)e

placed without conflicting with any of the conclusions obtained for looking at the subset.

It is known that a necessary and sufficient condition for the 3-D Delaunay triangulation

is that tile circumsphere passing through the vertices of any tetrahedron must be point free

[Law86]; that is to say that no other point of the triangulation can lie interior to this sphere.

Furthermore a property of locality exists so that only adjacent tetrahedra need be inspected

for the satisfaction of the circumsphere test. For the configuration of points shown in Fig.

2.4, convexity of the point cloud constrains z > 1 and the satisfaction of the circumsphere

test requires that z < 2.

1 < z < 2 (Delannay Triangulation)

From (2.17), W0i _> 0 if and only if z < 7/4.

7 (Nonnegativity)1 <z< 4'

This indicates that for 7/4 < z < 2 a valid Delaunay triangulation exists which does not

satisfy a discrete maximum principle. In fact, the Delaunay triangulation of 400 points

randomly distributed in the unit cube revealed that approximately 25% of the interior edge

weights were of the wrong sign (negative).

Keep in mind that from (2.17) the sufficient but not necessary condition for nonnega-

tivity that all face angles be less than or equal to 7r/2. This is consistent with the known

result from [CR73].

2.2 Discrete Total Variation and Maximum Principles for

Hyperbolic Equations

This section examines discrete total variation and maximum princil)les for scMar conserva-

tion law equations. Begin by considering the nonlinear conservation law equation:

,,, + (f(,,))x = 0, = E R × a +
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which isdiscretizedill the conservationform:

wherehj+_
condition

Ua,t+ 1 A t
= U_ - A-_(hj+½ - hi_})

- H(U'_I,U n Uj+l)-- j-l+l, "",
(2.18)

= h(Uj-I+l, ..., Uj+_) is the numerical flux function satisfying the consistency

h(U, U, ..., U) = f (U).

A finite-difference scheme (2.18) is said to be monotone in the sense of Harten, Hyman, and

Lax [HHL76] if H is a monotone increasing function of each of its arguments.

OH Uk) > 0 V k < i < k (HHL monotonicity)_ -

This is a strong definition of monotonicity. In Crandall and Majda [CM80] it is proven that

schemes on Cartesian grids satisfying this condition converge to the physically relevant,

entropy satisfying solution. KrSner el al. [KRW96] has recently proven a similar result

for monotone upwind finite volume schemes on triangulated domains. Unfortunately, HHL

monotone schemes in conservation form are at most first order spatially accurate. Very

few results are known concerning the convergence of high order accurate approximations.

Johnson and Szepessy [JSg0] have shown convergence to entropy solutions using streamline

diffusion with specialized shock capturing operators. KrSner et al. [KSR95] have recently

obtained measure-valued convergence of higher order upwind finite volume schemes for

scalar conservation laws in several space dimensions.

To circumvent the first order accuracy of monotone schemes, Harten introdllced a weaker

concept of monotonicity. A grid function U is called monotone if for all i

min(Ui 1,Ui+1) <_ Ui <_ max(Ui-l,Ui+l).

A scheme is called monotonicity preserving if monotonicity of U =+1 follows from monotonic-

ity of U n. Observe the close relationship between monotonicity preservation in time and the

discrete maximum principle for Laplace's equation (2.16) in space. It follows immediately

from the definition of monotonicity preservation that

1. Local maxima are nonincreasing

2. Local minima are nondecreasing

which is a property of the conservation law equation. Using this weaker form of monotonicity

Harten [Har83a] introduced the notion of total variation diminishing schemes. Define the
total variation in one dimension:

cyo

Tv(u) = E Iu, - u,
- cyo

A scheme is said to be total variation diminishing (TVD) if

TV(U "+_) <_TV(U '_)

This is a dis(:rete analog of the total variation statement (2.4) given for the conservation

law equation. Har(,en has proven that schemes which are HHL monotone are TVD and
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schemesthat areTVD aremonotonicitypreserving,l_lrthermore,it call beshownthat all
linear monotonicity preserving schemes are at most first order accurate. Thus high order

accurate TVD schemes must necessarily be nonlinear in a fundamental way.

To understand the basic design principles for TVD schemes, assume a one-dimensional

periodic grid together with the following numerical scheme in abstract matrix operator form

[I + OAt .M D]U n+l = [I - (1 - O)At M D]U n (2.19)

where M and M are matrices which can be nonlinear functions of the solution U. The

matrix D denotes the difference operator

U1-Us I

U2 - U1

DU = [I - E-i]u = U3 - U.2 .

gj-uj-1

The scheme (2.19) represents a general family of explicit (0 = 0) and implicit (0 = 1)

schemes with arbitrary support. More importantly, schemes written in conservative form

can be rewritten in this form using (exact) mean value constructions. Using this notation

an equivalent definition of the total variation in terms of the Li norm is produced

TV(U) = liD UII1.

To analyze the scheme (2.19), multiply by D from the left and regroup.

[I + OAt D .MID U n+l = [I - (1 - O)At O M]D U n

or in symbolic form

£.DU n+l = _DU n DU n+l = l_ I"]_DUn

where invertibility of/2 has been assumed. This invertibility will be guaranteed from the

diagonal dominance required below. Next take the L1 norm of both sides and apply matrix-

vector inequalities.

= IIZ: t_IItTV(U _) (2.20)

This reveals the sufficient condition that 11/2-1_111 < 1. Recall that the Lt norm of a

matrix is obtained by summing the absolute value of elements of columns of the matrix

and choosing the column whose sum is largest. Furthermore, we have the usual matrix

inequality ]lZ:-lTglll < tl/: t lltl[_lli so that sufficient TVD conditions are that lie lilt < 1

and t1 11t _<1. These simple inequalities are enough to recover the TVD criteria of previous

investigators, see [Har83b, JL86].

Theorem 2.2.1 A sufficient condition for the scheme (2.19) to be TVD with 0 = 0 is that

7_ be bounded with 7_ > 0 (all elements are nonnegative).
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Proof." Considerthe explicitoperatorT¢ = I - At D M and multiply it fl'om tile left by

the summation vector sT = [1, I, ..., 1]. It is clear that srD = 0 so that sTT_ = sT (columns

sum to unity). Because the L1 norm of 7_ is the maximum of the sum of absolute values of

dements in columns of 7_, the stated theorem is proven. •

Next consider the implicit scheme with 0 = 1 and sufficient conditions for [1£ l[ll ___1.

From the previous development, one way to do this would be to show that £ is monotone,

i.e. £:-1 _> 0 with columns that sum to unity.

Theorem 2.2.2 A sufficient condition for the scheme (2.19) to be TVD with 0 = 1 is that

/: be an M-type monotone matrix, i.e. diagonally dominant with positive diagonal entries

and negative off-diagonal entries•

Proof: Consider the implicit operator/2 = I + At D M and multiply it from the left by

the summation vector• Again note that sTD = 0 so that

sT _ = sT _ sT = sT f-1

which implies that columns of £-1 sum to unity. The final result is obtained by appealing

to Theorem 2.1.1 concerning M-type monotone matrix operators. •

This general theory reproduces some well known results by Harten [Hart83]. Consider

the following explicit scheme in Harten's notation:

u;+' --u; + - °
where Aj+I/2U = Uj+I -Uj. The operator T_ in this case has the following banded structure

t.. ... 0 0 "'._

•". "'. C++1/2 0 0

0 Cj_t/2 1-Cj +1/2-Cj+1/2 Ci+3/2 0

0 0 C_-+l/_ "'. "'.

_". 0 0 "'. "'.)

We need only require that this matrix be nonnegative to arrive at Harten's criteria:

÷
C_+_/2 >_ 0

>-o
1 +- C_+112 - Cj+ll 2 _ 0

Next consider Harten's implicit form:

/-r n D + A rrn+l _ D A rrn+l_j+l+ j+,/2 j+t/2_ j-l�'2 j-t/'2'_'

In this case E has the general structure

/'" "'. 0 0

• . .. _D +• " j+_12 0

0 -nj_l/2 I+D + +Dj+ -D +j-k[12 II2 j-t-3/2

0 0 -Dj+_/2 ".

• . 0 0 "'.

1
0

0

o.
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To obtain Harten'sTVD criteria for the implicit scheme,weneedonly requirethat this
operatorbeanM-matrix to obtainthe followingconditionsasdid Harten

D +j+1/2 - 0

Dj+I/_ _ 0.

2.2.1 Maximum Principles and Monotonicity Preserving Schemes on Mul-

tidimensional Structured Meshes

Unfortunately, two motivations suggest a further weakening the concept of monotonicity.

The first motivation concerns a negative result by Goodman and Le Veque [GV85] that

conservative TVD schemes on Cartesian meshes in two space dimensions are first order

accurate. The second motivation is the apparent difficulty in extending the TVD concept to

arbitrary unstructured meshes. The first motivation inspired Spekreijse [Spe87] to consider

a new class of monotonicity preserving schemes based on positivity of coefficients. Consider

the following conservation law equation in two space dimensions

,,, + (f(u))x + (g(u))_= 0.

Next construct a discretization of (2.21) on a logically rectangular mesh

un+ 1 nj,k - U_,k

At

with nonlinear coefficients

- A + Irrn _ n A j_ U n3+_,kk_j+l,k V;,k) + ½,k ( J-X,k -- V_j,k)

+ _ _ u" - v_,k)+ _,_+_ (v_,_+_- v_,_)+ _:_ _( _,___

(2.21)

(2.22)

A_÷_,,=A(...,UL ,,k,Uh,U;÷,,,,...)

u.• =u(..,u _ u _ u_3 },k j-l,k, j,k, j+l,k,...)

Theorem 2.2.3 The scheme (2.22) exhibits a discrete maximum principle at steady-state

if all coefficients are uniformly bounded and nonnegative

AL_,_> 0 5_,_ >-0.

Furthermore, the scheme (2.22) is monotonicity [)reserving under a CFL-like condition if

1
At < rain

+ + •

-- Vj', E±(Aj±_,k+ _,k+_)

Proof." The first task is to prove a discrete maximum principle at steady-state by solving

for the value at (j, k).

E±(Aj+ ½,kUj+I,_ + Bj,k±½ UJ,k+_)

(2.23)

U£k

E+(Aj+½,k + Bj,k±})

+
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with the constraints
c_ , + a. _ + flj,k- ' + /3j,k+½,k = lO -_,k 3+7,k

and aj±½, k _ 0, and flj,k+½ -> 0. From positivity of coefficients and convexity of (2.23) it
follows that

min(Uj+l,/:, Uj,k+l) <_ Uj,k <_ max(Uj4-1,k, Uj,k+I). (2.24)

If Uj,k attains a maximum value M at (j, k) then

M = Uj-,,k = Uj+_,_= U_,k-1= U_,k+l.

Repeated application of (2.24) to neighboring mesh points establishes the maximum prin-

ciple.

Next it is straightforward to establish a CFL-like condition for monotonicity preservation

in time by again seeking positivity of coefficients and a convex local mapping from U n to
Un+ 1.

j,k = 1 -- At (A ½,k + Bj_k+½) U_,k + At _-_( j+i,kU_+l,k + Bj,k+½U_,k+l)
4-

= 7j,,v_,, + _(%4-½,_u74-_,_+ Zj,,±_v_,,4-1) (2.2_)
4-

with the derivable constraints

"Yj,k + °_j-½,k + _j+½,k + flj,k-½ + _j,k+½,k = 1

and c_j4-½,a _ 0, and f/j,k4-½ -_ 0. To show that (2.25) is a local convex mapping, it suffices

to satisfy the CFL-like condition for nonnegativity of _Tj,k:

1
At <: min 4- + (2.26)

- vjk E±(Aj4-½,k+ _,k±_)"

If (2.26) is satisfied then monotonicity preservation in time follows immediately:

• n n n un+l max(V;4-1,k,U_,k4-1,U_,k).mln(Uj+l,k, Uj,k4-1, Uj,k) _-- j,k _ n n

2.2.2 Maximum Principles and Monotonicity Preserving Schemes on Un-
structured Meshes

This section examines the maximum principle theory for conservation laws on unstructured

meshes. Specifically, our primary attention focuses on Godunov-like upwind finite volume

schemes [God59] utilizing solution reconstruction and evolution. Some early maximum prin-

ciple results for upwind finite volume schemes (:an be found in [DD88] [BJ89] [Bar91]. Note

that many of these results were subsequently used in implementations of the discontinuous

GMerkin method as well, see for example Bey [Bey91]. Also note that the present an_flysis

(lifters from maxinmm l)rincil)lc theory based on tim "upwind triangle" sctmme (levelol)ed

by Desideri and Dervieux [DD88], Arminjon and Dervieux [AD93].
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Consider the integral conservation law form of (2.21) for some domain _t comprised of

nonoverlapping control volumes, _ti, such that _ = U_ti and _i M _tj = 0, i _ j. Next,

impose the integral conservation law statement on each control volume

0/o £- + (F. n) dr = 0 (2.27)

where F(u) = f(u)_ + g(u)). The situation is depicted for a control volume f_0 in Fig. 2.5.

For two- and three-dimensional triangulations, several control volume choices are available:

,,--" ............... "......

O"'"*"" .... '",.

: .."t

Figure 2.5: Local control volume configuration for unstructured mesh.

the triangles themselves, Voronoi duals, median duals, etc. Although the actual choice of

control volume tessellation is very important, the monotonicity analysis contained in the

remainder of this section is largely independent of this choice. Consequently, a generic

control volume _0 with neighboring control volumes _i, i E A/0, as shown in Fig. 2.5, is

sufficient for the present analysis. In the following example, the solution data is assumed

constant in each control volume. This simplifies the analysis considerably. The second

example addresses the more general situation utilizing high order data reconstruction.

Example: Analysis of an Upwind Finite Volume Scheme with Piecewise Con-
stant Reconstruction

In this example, assume that the solution data u(x, y)i in each control volume _i is constant

with value equal to the integral average value, i.e.

= u d l'_, 'V'_ i E

where Ai is the area of _i. Next, define the unit exterior normal vector n0i for the control

volume boundary separating l't0 and _ti. It is also useflfl to define a normal vector n0i

which is scaled by the length (area in 3-D) of that portion of the control volume boundary

separating _0 and _ti. Finally, to simplify the exposition, define

f(u; 11) = F(u). I_

and assume the existence of a mean value linearization such that

f(v; V,) - f(u; il) = dr(u, v; _,)(v - u). (2.28)
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Usingthis notation,constructthefollowingupwindscheme

d(A050) = - _ h(50,_i; fi0i) (2.29)
i_No

with

h(To, 5i; goi) = _ (/(_0; 60i) + f(5;go/)) - Idf(_o,Si; g0i)l(5i - 50)

In Barth and Jespersen [BJ89], we proved a maximum principle and monotonicity preser-

vation of the scheme (2.29) for scalar advection.

Theorem 2.2.4 The upwind algorithm (2.29) with piecewise constant solution data ex-

hibits a discrete maximum principle for arbitrary unstructured meshes and is monotonicity

preserving under the CFL-like condition:

At < min -Aj

- wj_a Eie_, df- (5i,5j; _ai)"

Proof: Consider the control volume surrounding v0 as shown in Fig. 2.5. Recall that the

flux function was constructed using a mean value linearization such that

This permits regrouping terms into the following form:

d('70A0) =- _ f(n0;aoi)- Y_ 4 (_o,s/;lloi)(_/-n0)
iey¢0 ie.,Vo

where (-) --- (.)+ + (.)- and I(')1 = (')+ - ()-. For any closed control volume, it follows that

f(50;,10,) = 0.
i_ACo

Combining the remaining terms yields a final form for analysis

d(5oAo) = - _ df-(5o,Si; fioi)(Si - 50). (2.30)
ieAco

To verify a maximum principle at steady-state, set the time term to zero and solve for 50.

_ _i_.afodf-(no,Ti;noi) _i = Z oqni
uo = Y'_ie./V'odf- (To, Ti; fioi) ieNo

with _ie_¢o c_i = 1 and c_i _> 0. Since _0 is a convex combination of all neighbors

min_i < _0 < maxTi. (2.31)
ie_¢o - - ieNo

IfTo takes on a maximum value M in the interior,then _i -- M,V i E Afo. Repeated

application of (2.31) to neighboring control volumes establishes the maximum principle.

For Euler explicit, time stepping,

d(iZoAo) _ Ao At '
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a CFL-likecondition is obtainedfor monotonicitypreservation.
into (2.30)yields

Insertingthis expression

At

= _--_o __df--"-". -
iEAfo

= +
ie.X'o

(2.32)

It should be clear that coefficients in (2.32) sum to unity. To prove monotonicity preserva-

tion, it is sufficient to show nonnegativity of coefficients. Clearly, ai _> 0 V i > 0, hence,

monotonicity preservation is achieved if

Oto = 1 + A-_oy_ dr-(_r_, _n; noi) >_ O.

ieAro

This implies monotonicity preservation in time under the CFL-like condition

At < min -Aj

- wje_ ZieAr_ df-(_-_0,_//; n0i)"

Example: Analysis of High Order Accurate Upwind Advection Schemes Using

Arbitrary Order Reconstruction [Bar94]

In this example, high order accurate upwind schemes on unstructured meshes are consid-

ered. The technique used here is to show a maximum principle for the cell averages. The

solution algorithm is a relatively standard procedure for extensions of Godunov's scheme in

Eulerian coordinates, see for example [God59, vL79, CW84, HOEC87]. The basic idea in

Godunov's method is to treat the integral control volume averages, _, as the basic unknowns.

Using information from the control volume averages, k - th order piecewise polynomials are

reconstructed in each control volume 9ti:

=
mTn<_k

where P(m,n) (x - xc, y - Yc) = (x - xc)m(y - yc) n and (xc, Yc) is the control volume centroid.

The process of reconstruction amounts to finding the polynomial coefficients, c_(m,n). Near"

steep gradients and discontinuities, these polynomial coefficients maybe altered based on

monotonicity arguments. Because the reconstructed polynomials vary discontinuously from

control volume to control volume, a unique value of the solution does not exist at control

volume interfaces. This non-uniqueness is resolved via exact or approximate solutions of the

Riemann problem. In practice, this is accomplished by supplanting the true flux function

with a numerical flux fimction which produces a single unique flux given two solution states.

Once the flux integral is carried out (either exactly or by numerical quadrature), the control

volume average of the solution can be evolved in time. In most cases, standard techniques

for integrating ODE equations are used for the time evolution, i.e. Euler implicit, Euler

explicit, Runge-Kutta. The result of tim evoh|tion l)rocess is a new collection of control

volume averages. The process can then be repeated. The process can be summarized in t,he

following steps:
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(1) Reconstruction in Each Control Volume: Given integral solution averages in all

flj, reconstruct a k - th order piecewise polynomial Uk(x, y)i in each f_i for use in equation

(2.27). In faithful implementations of Godunov's method, cell averages of the solution data

u U k(x,y)i d_ = (_A)i
i

are preserved during the reconstruction process. For solutions containing discontinuities

and/or steep gradients, monotonicity enforcement may be required.

(2) Flux Evaluation on Each Edge: Supplant the true flux by a numerical flux flmction.

Given two solution states the numerical flux function returns a single unique flux. Using

the notation of the previous section, define f(u; n) = (F(u) •n) so that

£. I(,,;-)dr

Consider each control volume boundary O_i, to be a collection of polygonal edges (or dual

edges) from the mesh. Along each edge (or dual edge), perform a high order accurate

flux quadrature. When the reconstruction polynomial is piecewise linear, single (midpoint)

quadrature is usually employed on both structured and unstructured meshes

£ h(UL,U';n) ar = h(UL, " -U ;n)ij
_ jeAfi

where U L and U R are solution values evaluated at the midpoint of control volume edges as

strewn in Fig. 2.5. When multi-point quadrature formulas are employed, they are assumed
to be of the form:

_o 1 f(s)ds = E Wqf(_q)
qEQ

with wq > 0 and _q C [0, 1]. Let the nmlti-point quadrature formulas be represented by the

augmented notation

f0 h(u 'u ;n)ar
f_i jEJ_fi qEQ

(3) Evolution in Each Control Volume: Collect flux contributions in each control

volume and evolve in time using any tinm stepping scheme, i.e. Euler explicit, Euler implicit,

Runge-Kutta, etc. The result of this step is once again control volume averages and the

process can be repeated.

In the present analysis, tim reconstruction polynomials Uk(x,y)i in each fti are given.

The result of the analysis will be conditions or constraints on the reconstruction so that

a maximum principle involving cell averages can be obtained. The topic of reconstruction

and implementation of the constraints determined by this analysis will be examined in

a later section. Using this notation, the following upwind scheme is constructed for the

configuration in Fig. 2.5.

d
-_(A0_0) =- _ _ wqh(UL, UR;il)oiq (2.33)

ieACoqeQ
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with a numerical flux fimction obtained from (2.28).

h(U L, UR ; fioi) =
1

(f(uL;_) + I(uR;_))0,

l ldf (U L, UR; fi)loi (U n - UL )oi (2.34)

To analyze the scheme, recall that the flux function was constructed using a mean value
linearization such that

f(uR; _) -- f(uL; _) = df(U L, UR; _)(U R - uL).

This permits regrouping terms into tile following form:

d(u°A°) =- X XWq (f(UL;") +df-(uL, uR;fi)(uR--uL))Oiq"
ieXo qEQ

(2.35)

Rewrite the first term in the sum using a metal vahm construction

_ wd(_o;_)o,_+ _ @(:o, uL;_)(u_- :o))+.
iEAfo qEQ

The first term vanishes when summed over a closed volume so that (2.35) reduces to

d(_oAo) = - _ Y_wq (df(_o, UL;fi)(uL-_o) + df-(uL, uR;f)(uR -uL))oi q
iEA:o qEQ

By introducing difference ratios, the scheme can be written in the following form:

d(iz0A0)
dt

(2.36)

with

qJO/q- _i-iTo ' (I)oiq- u-o-_k ' OO/q- _i-3o

In this equation, the k subscript refers to some as yet unspecified index value, k E Afo.

Theorem 2.2.5 The generalized Godunov scheme with arbitrary order reconstruction (2.33)

exhibits a discrete maximum principle at steady-state if the following three conditions are
fulfilled:

_Pjiq __ 0, ffi)ji q __ 00ji q _ 0 Vj, q, i E Afj (2.37)

as defined by (2.36). 151rthermore, the scheme is monotonicity preserving under a CFL-like
condition if

At < rain -Aj
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Proof: Assume that (2.37) holds. Define -_foiq = wqdf(i-io, uL; II)Oiq and similarly dfoiq =

wqdf(U L, Ua; n)Oiq. Setting tile time term to zero and solving for i70 yields

'U0

r,_o rq_ (_,- _-_ - _J-e)o__
E oqgi.

ieAro
(2.38)

Examining the individual coefficients, it is clear that _TieAc o cq = 1 and oei _ 0, Vi. Thus a

convex local mapping exists and

min ui < go < maxgi.
ieN0 - - ieX0

(2.39)

If go takes on a maximum value M in the interior, then gi = M,V i C Afo. Repeated

application of (2.39) to neighboring control volumes establishes tlm maximum principle.

To establish monotonicity preservation in time, consider Euler explicit time-stepping
scheme.

d(g0A0) _ A0 At

Inserting this formula into (2.36) yields

at _ E _q_0_q(_ -_0)
_oo+1 = _oo - A--_ieazo qEQ

At E E ,---'+. _,_
Ao iexo qeq df oiq'_oiq(Uo - _'_ )

Ao ieHo qeQ

= C_o_-_oo+ E E oq_ (2.40)
ie.hfo qe Q

with a0 + _ieNo o_ = 1 and ai 2 0, i > 0. A locally convex mapping in time from U n to
U n+l is achieved when c_0 _ 0. This assures monotonicity in time. Some algebra reveals

the following formula for e_0

At

ieNo qeO

From this the CFL-like condition for monotonicity preservation is obtained

At < min -Ao

- __'_"_o zq_Q(_ - _+_ +_ O)o,_
so that

ieago ..... ie_0 _"

Applying this result to all control volumes establishes monotonicity preservation. •

Without specifying the actual type of reconstruction, we have the following simple lemma

concerning the ratios appearing in (2.36):
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Lemma 2.2.1 Assume_POiq>_0 asdefinedin (2.36).A sufficientconditionfor (IMq> 0 is
that the reconstructedpolynomialreduceto thecell averagevahm,Uk(x, Y)o = i7o, at local

cell average extrema, i.e. whenever

max _ < i7o < rain K_.
jeNo _ - - je_fo _

Proof: Consider an arbitrary control volume _i adjacent to _0. Assume that ui __ t0.

The stated assumption, q!oiq __ 0 implies that U(_iq _ uo. Consequently, (I)oiq <: 0 if and
only if u0 is less than all adjacent neighbors, hence a local minimunl. Following a similar

argument, _o is a local maximum when ui _<u0 and (I)oiq < 0. •
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Chapter 3

Upwind Finite Volume Schemes

This chapter examines upwind finite volumes schemes for scalar and system conservation

laws. The basic tasks in the upwind finite volume approach have already been presented:

reconstruction, flux evaluation, a_d evolution. By far, the most difficult task in this process

is the reconstruction step.

3.1 Reconstruction Schemes for Upwind Finite Volume Schemes

In the following paragraphs, the design criteria for general reconstruction operators with

fixed stencil is reviewed. The reader is referred to the papers by Abgrall [Abg94, Abg95],

Vankeirsbilck [Van93] and Michell [Mic94] for a discussion of ENO and adaptive stencil
reconstruction schemes.

The reconstruction operator serves as a finite-dimensional (possibly pseudo) inverse of

the cell-averaging operator A whose j-th component Aj computes the cell average of the

solution in _j.

1 /_ u(x,y)df_

In addition, the following properties are usually imposed on tile reconstruction:

(1) Conservation of the mean: Simply stated, given cell averages ',-/, we require that all

polynomial reconstructions u k have the correct cell average.

if uk=Rk_ then _=Au k

This means that R k is a right inverse of the averaging operator A.

AR k = I

Conservation of the mean has an important implication. Unlike finite-element schemes,

Godunov schemes have a diagonal mass matrix.

(2) k-exactness: A reconstruction operator R k is k-exact if RkA reconstructs polynomials

of degree k or less exactly.

if u C 7_k and _ = Au, then u k = Rki7 = u

In other words, R k is a left-inverse of A restricted to the space of polynomials of degree at

most k.

RkA = I
Pk
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This insures that exact solutions contained in P_ are in fact solutions of tile discrete equa-

tions. For sufficiently smooth solutions, tile property of k-exactness also insures that when

piecewise polynomials are evaluated at control volume boundaries, tile difference between

solution states diminishes with increasing k at a rate proportional to h k+l were h is a

maximum diameter of the two control vohnnes. Figure 3.1 shows a global quartic polyno-

mial u E T'4 which has been averaged in each interval. This same figure shows linear and

Z_ZZZZ_Z

ii#iiiiili:ilil

ilili!i!i!i  iI/!

iiilt!/f  i

Figure 3.1: Cell averaging of quaxtic polynomial (left), linear reconstruction (center) and

quadratic reconstruction (right).

quadratic reconstruction given interval averages. The small jumps in the piecewise polyno-

mials at interval boundaries would decrease even more for cubics and vanish altogether for

quartic reconstruction. Property (1) requires that the area under each piecewisc polynomial

is exactly equal to the cell average.

One of the most important observations concerning linear 7vconstruction is that one can

dispense with the notion o/ cell averages as unknowns by reinterpreting the unknowns as

pointwise values of the solution sampled at the centroid (midpoint in 1-I)) o/ the control

volume. This well known result greatly simplifies schemes based on linear reconstruction.

The linear reconstruction in each interval shown in Fig. 3.1 was obtained by a simple

central-difference formula given pointwise values of the solution at the midpoint of each

interval. Note that for steady-state computations, cormervation of the mean in the data

reconstruction is not necessary. Tire implication of violating this conservation is that a

nondiagonal mass matrix appears in the time integral. Since time derivatives vanish at

steady-state, tire effect of this mass matrix vanishes at steady-state. The reconstruction

schemes presented below assume that solution variables are placed at the vertices of the

mesh, which may not be at the precise centroid.

3.1.1 Green-Gauss Reconstruction

Let Do denote tire set of all triangles incident to some vertex v0 and the exact integral
relat ion

_) _7,ud_,=_ undP. (3.1)
o I)o
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It is not difficult to show [BJ89] that given flmction values at vertices of a triangulation, a

discretization of this formula can be constructed which is exact whenever u varies linearly:

1 1

= _ + (3.2)
ieN0

In this formula fi0i -- ff d _ for any path which connects triangle centroids adjacent to the

edge e(v0, vi) and A0 is the area of the nonoverlapping dual regions formed by this choice of

path integration. Two typical choices are the median and centroid duals as shown below.

This approximation extends naturally to three dimensions. The formula (3.2) suggests a

4

' 31___ Mesh

Median Dual

2' -- Cenlroid Dual

6

Figure 3.2: Local mesh with centroid and median duals.

natural computer implementation using the edge data structure. Assume that the normeds

fiij for all edges e(v.i, vj) have been precomputed with the convention that the normal vector

points from vi to vj. An edge implementation of (3.2) can be performed in the following

way:

For k = 1, n(e) ! Loop through edges of mesh

jl = e l(k, 1) !Pointer to edge origin

j2 = e-l(k, 2) !Pointer to edge destination

uav = (u(jl) + u(j2))/2 !Gather

ux(jt) + = normx(k) . uav !Scatter
ux(j2) - = normx(k) • uav

uy(jl) + = normy(k) . uav

uy(j2 ) - -= normy( k ) . uav
Endfor

For j -- 1, n(v) ! Loop through vertices

ux(j) -- ux(j)/area(j) ! Scale by area

uy(j) -- uy(j) �area(j)
End for

It can be shown that the use of edge formulas for the computation of vertex gradients is

asymptotically optimal in terms of work done.

3.1.2 Linear Least-Squares Reconstruction

_Ib derive this reconstruction technique, consider a vertex v0 and sut)pose that the solution

varies linearly over t,he support of adjacent neighbors of the mesh. In this case, the change

in vertex values of t.he solution along an edge e(vi, v0) can be calculated by

(Vu)o " (ri -- r0) = 'ui -- Uo.
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This equationrepre_ntsthe scaledprojectionof the gradientalongthe edgee(vi,vo). A

similar equation could be written for all incident edges subject to an arbitrary weighting

factor. The result is the following matrix equation, shown here in two dimensions:

wlAxt wiAyl

LWnAXn wnAyn

or in symbolic form £ Vu = f where

c=[£1 i2]

in two dimensions. Exact calculation of gradients for linearly varying u is guaranteed if any

two row vectors wi(ri - r0) span all of 2 space. This implies linear independence of/_t and

/_2. The system can then be solved via a Gram-Schmidt process, i.e.,

1 0 21[01] I534/
The row vectors _ are given by

t22£1- h2G

111122 - 1_2
lllf_2 - 112L1G=

lltl22 - l_2
(3.3)

with lij = (f-i" f-j).
d-t-1

Note that reconstruction of N independent variables in R a implies ( 2 ) +dN inner

product sums. Since only dN of these sums involves the solution variables themselves,

the remaining sums could be precalculated and stored in computer memory. This makes

the present scheme competitive with the Green-Gauss reconstruction. Using the edge data

structure, the calculation of inner product sums can be calculated for arbitrary combinations

of polyhedral cells. In all cases linear functions are reconstructed exactly. This technique

is best illustrated by example:

For k = 1, n(e) !Loop through edges of mesh

jl = e l(k, 1) !Pointer to edge origin

j2 = e-l(k, 2) !Pointer to edge destination

dx = w(k) . (x(j2) - x(jl)) !Weighted Ax

dy = w(k) . (Y(j2) - Y(jl)) !Weighted Ay

IH(jl) = IH(jl) + dx.dx ! It1 orig sum

/H(j2) = /H(J2) + dx. dx ! ltl dest sum

/12(jl) = ll2(jt) + dx-dy !/12 orig sum

112(j2) =/12(j2) + dx- dy !/12 dest sum

du = w(k) . (u(j2) - u(jl)) !Weighted Au

Ill(j1) + = dx. du !Ltf sum

th(j2) + = dx. du
If2(jl) + = dy-d,t ![,2f sum

th(j2) + = dy. d,,
End for

For j = 1, n(v) ! Loop through vertices
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det = 111(j)"/22(J) - 122
u (j) = (t2.2(j). - t,.2. ty.2)/det
uv(j) = (/11 (J)" IA(j) - 11.2. lfl)/det

Endfor

This fornmlation provides freedom in the choice of weighting coefficients, wi. These

weighting coefficients can be a function of the geometry and/or solution. Classical approx-

imations in one dimension can be recovered by choosing geometrical weights of the form

wi = 1./[Ari - Ar0[ t for values oft = 0, 1,2.

3.1.3 Monotonicity Enforcement

When solution discontinuities and steep gradients as present, additional steps must be

taken to prevent oscillations from developing in the numerical solution. One way to do this

was pioneered by van Leer [vL79] in the late 1970's. His basic idea was to enforce strict

monotonicity in the reconstruction. Monotonicity in this context means that the value of the

reconstructed polynomial does not exceed the minimum and maximum of neighboring cell

averages. The final reconstruction must guarantee that no new extrema have been created.

When a new extremum is produced, the slope of the reconstruction in that interval is

reduced until monotonicity is restored. This implies that at a local minimum or maximum

in the cell averaged data the slope in 1-D is always reduced to zero, see for example Fig.

3.3. Theorem 2.2.5 provides sufficient conditions for a discrete maximum principle in the

Figure 3.3: Linear data reconstruction with monotone limiting.

cell averages using arbitrary order reconstruction on general control volumes. Consider the

control volume interface separating f/0 and _2i as shown in Fig. 2.5. l_'om Theorem 2.2.5,

a maximum principle is guaranteed if for all quadrature points on the interface separating

f_o and Qi

_Poi>O, qSoi>O O0i>_O.

Lemma 2.2.1 states that <b0i _> 0 is always satisfied if the monotonicity enforcement algo-

rithm reduces to piecewise constant at local extrenmm, i.e. when

max .u-")< _o < min '_j.
jeN0 - - jeXo
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Assunmthat this propertyholds,monotonicityreducesto the followingtwo conditionsat
all quadraturepoints:

0< (a)
-- It i --lt 0

0 < UR-UL (b) (3.4)
-- Ui --UO

The second inequality appearing in (3.4) requires that the difference in the extrapolated

states at a cell interface must be of the same sign as the difference in the cell average

values. For example in Fig. 3.4(a) this condition is violated but can be remedied either by

a symmetric reduction of slopes or by replacing the larger slope by the minimum value of

the two slopes. Observe that in one space dimension the net effect of the slope limiting in

(a)

iilii .........'

fa)

Figure 3.4: (a) Reconstruction profile with increased variation violating monotonicity con-

straints. (b) Profile after modification to satisfy monotonicity constraints.

the _vconstruction process is to ensure that the total variation of the reconstructed function

does not exceed the total variation of the cell averaged data.

In Barth and Jespersen [BJ89], a simple recipe was proposed for slope limiting of lin-

early reconstructed data on arbitrary unstructured meshes. Consider writing the linearly

reconstructed data in the following form for f_0:

U(x, Y)0 = u0 + Vu0-(r - r0).

Now consider a "limited" form of this piecewise linear distribution.

U(x, y)0 = uo + (I)0Vu0 • (r - r0)

and require that

mi_ mjn (_o, _i)?t o =
zEAlo

max _ Ina_. u'0, _i
_aO iENo ( )

4 < y)o <

when evaluated at the quadrature points used in the flux integral computation. For each

quadrature point location in the flux integral, compute the extrapolated state UL and

determine the smallest 'b0 so that

{ rain(l, '-_ _- '--o),

U_ -*-?

'I'o = rain(l, _ ' r,_o_

I

if Udt_- _o > 0

ifUd_-_o <0 "

if U_i - i7o = 0
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This limiter functionautomaticallysatisfiesLemma2.2.1.Condition(a) from (3.4)is local
to the controlvolumeandcanbeenforcedby a fllrther reduction in slope. In practice this

step is sometimes omitted. Condition (b) is enforced using the procedure shown in Fig. 3.4.

Extensive numerical testing has shown that this limiter can noticeably degrade the over-

all accuracy of computations, especially for flows on coarse meshes. In addition the limiter

behaves poorly when the solution is nearly constant unless additional heuristic parameters

are added. This has prompted other researchers (c.f. Venkatakrishnan [Ven93]) to proposed

alternative "smooth" limiter functions, but no serious attempt is made to appeal to the rig-

ors of maximum principle theory. The design of accurate limiters satisfying the maximum

principle constraints is still an open problem in this area.

When the above procedures are combined with the flux function given earlier (2.34),

h(U L, uR; n)
1

: (:(uL; n) + y(uR;n))

-  Id:(UL,U';n)I(U'-U (3.5)

the resulting scheme has good shock resolving characteristics. To demonstrate this, we

consider the scalar nonlinear hyperbolic problem suggested by Struijs, Deconinck, et al.

[Str89]. The equation is a multidimensional form of Burger's equation.

ut+(u2/2)x+uy=O

This equation is solved in a square region [0, 1.5] x [0, 1.5] with boundary conditions:

u(x,O) = 1.5-2x, x < 1, u(x,0) = -.5, x > 1, u(O,y) = 1.5, and u(1.5,y) = -.5.

Figure 3.5 straws carpet plots and contours of tim solution on regular and irregular meshes.

The exact solution to this problem consists of converging straightline characteristics which

Figure 3.5: Carpet plot of Burger's equation solution on (a) regular mesh, (b) irregular
mesh.

eventually form a shock which propagates to the upper boundary. The carpet plots indicate
that the numerical solution on both meshes is monotone. Even so, most people would prefer

the solution on the regular mesh. This is an unavoidable consequence of irregular meshes.

Tim only remedy appears to be mesh adaptation.

Next, consider a test problem which solves the two-dimensional scalar advection equation

+ (y,,):, - (x,,),. = o
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or equivalently
u +7 vu=0, = (y,-x) T

on a grid centered about the origin, _e Fig. 3.6. Discontinuous inflow data is specified

along an interior cut line, u(x,0) = 1 for -.6 < x < -.3 and u(x,O) = O, otherwise. The

exact solution is a solid body rotation of the cut line data throughout the domain. The

Figure 3.6: Grid for the circular advection problem (left) and solution contours obtained

using piecewise constant reconstruction (right).

Figure 3.7: Solution contours, piecewise linear reconstruction (left) and piecewise quadratic

reconstruction (right).

discontinuities admitted by tills equation are similar to the linear contact and slip line so-

lutions admitted by the Euler equations. Figure 3.6 also shows solution contours obtained

using piecewise consta_lt reconstruction. The discontinuities are quickly smeared by the

computation. Figure 3.7 displays solution contours obtained using piecewise linear and a

piecewise quadratic reconstruction technique discussed in [Bar93, Bar94]. The improvement

from piecewise constant reconstruction to piecewise linear is quite dramatic. The improve-

ment from piecewisc line,u" to piecewise quadratic _flso looks impressive. The wi(lLh of the
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discontinuitiesis substantiallyreducedwith little observablegrid dependence.Notehow-
ever,that the quadraticapproximationusedfor this computationhasroughlyquadrupled
the numberof solutionunknownsbecauseof tile useof 6-nodedtriangles.

3.2 Numerical Solution of the Euler and Navier-Stokes Equa-

tions Using Upwind Finite Volume Approximation

The section discusses the extension and application of the scalar finite volume scheme to

the Euler and Navier-Stokes equations. One advantage of the finite volume method is the
relative ease in which this can be done.

3.2.1 Extension of Scalar Advection Schemes to Systems of Equations

The extension of the scalar a_tvection schemes to the Euler (and Navier-Stokes) equations

requires three rather minor modifications:

1. Vector Flux Function. The scalar flux function is replaced by a vector flux function.

In the present work, the mean value linearization due to Roe [Roe81] is used. The

form of this vector flux function is identical to the scalar flux function (2.34), i.e.

1 (f(uR,n) + f(uL;n))h(u R,ul'; n) =

where f(u; n) -- F(u) • n, and A = df/du is the flux Jacobia_L

2. Componentwise limiting. The solution variables are reconstructed componentwise.

In principle, any set of variables can be used in the reconstruction (primitive vari-

ables, entropy variables, etc.). Note that conservation of the mean can make certain

variable coml)inations more difficult to implement than others because of the non-

linearities that may be introduced. The simplest choice is obviously the conserved

variables themselves. When conservation of the mean is not important (steady-state

calculations), we typically use primitive variables in the reconstruction step.

3. Weak Boundary Conditions. Boundary conditions for inviscid flow at solid surfaces

arc enforced weakly. For solid wall boundary edges, the flux is calculated with V • n

set identically to zero

IY/
Boundary conditions at far field boundaries are also done weakly. Define the charac-

teristic projectors of the ftux Jaeobian A in the following way:

= 21-[/+ sign(A)].p+

At fax field boundary edges the fluxes are assumed to be of the form:

f(u";.) = (F(U_oj) • -)
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n = p+ u nwhere Uproj + P- u_ and uoo represents a vector of prescribed far field
solution values. At first glance, prescribing the entire vector uo¢ is an overspecification

of boundary conditions. Fortunately the characteristic projectors remove or ignore

certain combinations of data so that the correct number of conditions are specified at

inflow and outflow.

3.2.2 Example: Supersonic Oblique Shock Reflections

In this example, two supersonic streams (M=2.50 and M=2.31) are introduced at the left

boundary. These streams interact producing a pattern of supersonic shock reflections down

the length of the converging channel. The grid is a subdivided 15x52 mesh with perturbed

coordinates as shown in Fig. 3.8. This same figure also shows Mach contours for the numer-

Figure 3.8: (a) Channel grid, 780 vertices (left). (b) Mach contours, piecewise constant

reconstruction (right).

ical solution obtained using piecewise constant reconstruction. As expected, the piecewise

constant reconstruction scheme severely smears the shock system while the scheme based

oil a linear solution reconstruction shown in Fig. 3.9 performs very well. The piecewise

quadratic approximation, shows some improvement in shock wave thickness although the

improvement is not dramatic given the increased number of unknowns used in this paxtic-

ular scheme [Bar93]. The number of unknowns required for the quadratic approximation is

roughly four times the number required for the piecewise linear scheme. This lack of dra-

matic improvement is not a surprising result since the solution has large regions of constant

flow which do not benefit greatly from the quadratic approximation. At solution disconti-

nuities the quadratic scheme reduces to a low order approximation which again negates the

benefit of the quadratic reconstruction. To provide a fair comparison, Fig. 3.10 shows the

Figure 3.9: Mach contours. (a) Piecewise linear reconstruction (left). (b) Piecewise

quadratic reconstruction (right).

same mesh adaptively refined. The number of mesh points has roughly doubled. A humeri-

ca] solution was then obtained using linear reconstruction. The results are very comparable

to the calculation performed using quadratic reconstruction while requiring less that 10%

as much computationa] time.
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Figure3.10:(a) Adaptedchannelgrid, 1675vertices.(left). (b) Math contours,piecewise
linearreconstruction(right).

3.2.3 Example: Transonic Airfoil Flow

Figure 3.11 shows a simple Steiner triangulation and the resulting solution obtained with a

linear reconstruction scheme for transonic Euler flow (Moo = .80, a = 1.25 °) over a NACA

0012 airfoil section.

I

Figure 3.11: (a) Initial triangulation of airfoil, 3155 vertices (left). (b) Mach number

contours, Moo = .80, a = 1.25 °.

Even though the grid is very coarse with only 3155 vertices, the upper surface shock

is captured cleanly with a profile that extends over two cells of tile mesh. Clearly, the

power of the unstructured grid method is the ability to locally adapt the mesh to resolve

flow features. Figure 3.12 shows an adaptively refined mesh and solution for the same ttow.

The flow features in Fig. 3.12 are clearly defined with a weak lower surface shock now

visible. Figure 3.13 shows the surface pressure coefficient distribution on tim airfoil. The

discontinuities are monotonically captured by the scheme.

3.2.4 Example: Navier-Stokes Flow with Turbulence

As a last finite volume example, compressible Navier-Stokes flow is computed about a

multiple-component airfoil geometry. In addition to the basic Navier-Stokes equations,

the effects of turbulence on the mean ftow equations are modeled using an eddy viscosity

turl)ulence transport model. In a report with Baldwin [BB90], we proposed a single equation

turbulcnce transport model with the specific application to unstructured meshes in mind.
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Figure 3.12: (a) Solution adaptive triangulation of airfoil, 6917 vertices. (b) Mach number

solution contours on adapted airfoil.
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Figure 3.13: Comparison of Cp distributions on initial and adapted meshes.

This model was subsequently modified by Spalart and Alhnaras [SA92] to improve the

predictive capability of the model for wakes and shear-layers as well as to simplify the

model's dependence on distance to solid walls. In the present computations, the Spalart

model is solved in a form fully coupled to tim Navier-Stokes equations. The one-equation

model for the viscosity-like parameter P is written

DP. = _I[v • ((u + _)Vu)+ cb2(V_) 2] -Cwtfw +cbtS_'.Dt a
(3.7)

In the Spalart model the kinematic eddy viscosity is given by ut = _fvl and requires the

following closure fimctions and constants

u_ X 3
g -- I_1+ --_d2.f,2, .f,,_ -

X 3 A- (:31
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X

fv2 = 1 l + Xfvl' r-- _N2ar2

g = r+c_2(r 6-r)

with w the fluid vorticity, d the distance to the closest surface, and the constants Cbl ---

0.1355, Cb2 = 0.622, c-v1 = 7.1, Cwl = 3.24, Cw2 = 0.3, Cw3 = 2.0, _ = .41, a = 2./3..

The model also includes an optional term for simulating transition to turbulence. Using

this model, viscous flow with turbulence is computed about the multiple-clement airfoil

geometry. This geometry has been triangulated using the Steiner triangulation algorithm

!
Figure 3.14: Multi-clement airfoil mesh (left) and solution isomach contours (right), Moo =

0.2, c_ = 16.0 °, Re = 9.0 million.
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Figure 3.15: Comparison of computation and experiment (left), solution convergence history

(right)

described in [Bar95a], see Figure 3.14. The relatively coarse mesh contains approximately

22,000 vert.ices with cells near the airfoil surface attaining aspect ratios greater than 1000:l.
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This exampleprovidesa demandingtest casefor CFD algorithms.The experimentalflow
conditionsaxeM_ = .20, c_ = 16°, and a Reynolds number of 9 million. Experimental

results axe given in [VDMG92]. Even though the wake passing over the main element is

not well resolved, the surface pressure coefficient shown in Figure 3.15 agq'ees quite well

with experiment. The spatially discretized tlow equations axe solved using an exact Newton

interation as described in [Bax95b]. The eventual quadratic convergence of Newton's method

is shown in Fig. 3.15.
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Chapter 4

Simplified GLS in Symmetric Form

This chapter returns to the symmetrization topic of Chapter 1 and presents a new simplified

variant of the Galerkin least-squares (GLS) scheme in symmetric form. By combining the

Scaling Theorem 1.2.1 of Chapter 1 with a simple congruence approximation given in the

next section, a substancial simplification of this scheme is possible.

4.1 Congruence Approximation

Lemma 4.1.1 (Congruence Approximation) Let A E R n×n be an arbitrary diagonal-

izable matrix and B E R u×n a right symmetrizer of A. If R E R n×_ denotes the right

eigenvector matrix scaled under Theorem 1.2.1 such that

A = RAR -1, andB=RR T,

then the following inertially equivalent approximate decomposition exists

(AB) + ,_ RA + R T

satisfying

AB = (AB) + + (AB)- = RA+R T + RA- R T.

Proof: Let U E R '_xn denote the unitary matrix diagonalizing A B

A B =UflU T= RAR T, UU T= I, RR T= B.

Left and right multiplication by U T and U respectively yields

= (UTR)A(UTR) T.

From Sylvestor's law of inertia

Inertia(12) = Inertia(A)

so consequently

Inertia(IY L) = Inertia(A i) = Inertia ((uT R)A+ (UT R)T) .
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Left andright multiplicationby U and U T respectively

Uft+U T = (A B) ± _- RA±R T.

Finally, adding positive and negative components reveals

R(A + +A-)R T = RAR T = AB.

4.2 Simplified Galerkin Least-Squares in Symmetric Form

Let I n =]tn,tn+l[ denote the nth time interval and 9t the spatial domain composed of

nonoverlapping elements Ti, _ = UT_, TiNTj = 0, i _ j. Next define the trial and weighting

finite element spaces

= . .m . r-))mq(v) o. r. ×

where v denotes the entropy variables for the system. The Galerkin least-squares method

is defined by the following bilinear forms [HFM86]:

Find v h E ]2h such that for all w h G S a

B(v h,wh)gal + B(v h, wh)l_ + B(v h, wh)bc = 0

with

B(v,W)g,_l = f.f(-u(v).wt-f_(v)w._,d_dt

+ f(w(tr_+l)u(v(tn+l)) - w(t_)u(v(t_))) dft

n F

where

h(v__,v+,n) = _ (f(u(v_);n) + f(u(v+);n)) - tA(u(V);n)l(u(v+) - u(v )).

4.2.1 A Simplified Least-Squares Operator in Symmetric Form

In the implementation of the Galerkin least-squares method, the most difficult computa-

tional aspect of the scheme is the calculation of the least-squares T matrix. In the paper by

Hughes and Mallet [HM86], they proposed tim following general form for r on a mapped,

x w+ _, _nisotropie element

r_ = Ihl_-a, I/_lp = IB_I_ , hi= (O_i/Oxj) AJA° (4.1)
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whereAJ and A ° are the matrices given in (1.5). Historically, the value p = 2 has been

used in implementations of the Galerkin least-squares method. After manipulation, r2 can
be written in the form

) -1/2r2 = (A°) - \-_xo] + \Oxj] \Ozk]

This necessitates tile calculation of a matrix square root. Hughes advocates tim use of

the Cayley-Hamilton theorem for this computation. Unfortunately, the Cayley-Hamilton

technique becomes unwieldy for matrices of dimension larger than 4 or 5. In light of tile

Scaling Theorem 1.2.1, it is useflfl to revisit the derivation of v with p = 1. Define ni =

V{i/[_7{i[ and A(n) = niA i so that (4.1) can be rewritten as

rl = I/_l[ 1 = (IV{i[ ]A(ni)A°[) -I

Observe that for the Euler and MHD equations considered in Chapter 1, the eigenvectors

of A(n)A ° are not easily obtained. Hence, the computation of [A(ni)A°[ seems nontrivial

as well. Lemma 4.1.1 suggests the inertially equivalent approximation

IA(n)A°I _ R(n)IA(n)IRT(n)

using the entropy scaled eigenvectors R(n) of A(n). From this, the following approximation
for r follows

TI _ (IVgil R(n, 1.

This represents a substantial simplification of the r matrix calculation.

4.2.2 Example: MHD Flow for Perturbed Prandtl-Meyer Fan

In this example, the MHD equations are solved in the square domain _ E [-1/2, 1/2] 2 using

the simplified GLS sclmme. The inflow data consists of a Mach 1.55 Prandtl-Meyer fan with

origin located at (x = -.881, y = .47147). A velocity aligned magnetic field, B = .05V, is

introduced at the boundary. Figqlre 4.1 shows the coarsest mesh used for tim computation

and Mach number contours computed from the simplified GLS scheme. Figure 4.2 shows

contours of the x-component of the magnetic field using linear and quadratic elements on

the coarsest mesh. Solutions were then obtained on a sequence of meshes with decreasing

mesh spacing and the L2 norm of V. B measured. Figure 4.3 graphs the convergence of

V. B for linear and quadratic approximations. The graphs show optimal convergence rates,

O(h) for linear and O(h 2) for quadratic elements.
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Figure4.1: Coarsestmesh(400vertices)andMachnumbercontoursfor perturbedPrandtl-
Meyerfan.

Figure4.2: Bz component of magnetic field computed on coarsest mesh. Galerkin least-

squares with linear elements (left) and quadratic elements (right).
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Figure 4.3: Spatial Convergence of V. B for the Galerkin least-squa_'es scheme using linear

and quadratic elements.
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